首页> 外文OA文献 >Oxoferryl species in mononuclear non-heme iron enzymes : biosynthesis, properties and reactivity from a theoretical perspective
【2h】

Oxoferryl species in mononuclear non-heme iron enzymes : biosynthesis, properties and reactivity from a theoretical perspective

机译:单核非血红素铁酶中的oxoferryl物种:从理论角度看的生物合成,性质和反应性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mononuclear non-heme iron enzymes perform a wide range of chemical reactions. Still, the catalytic mechanisms are usually remarkably similar, with formation of a key oxoferryl (Fe(IV)=O) intermediate through two well-defined steps. First, two-electron reduction of dioxygen occurs to form a peroxo species, followed by O-O bond cleavage. Even though the peroxo species have different chemical character in various enzyme families, the analogies between different enzymes in the group make it an excellent base for investigating factors that control metal-enzyme catalysis. We have used density-functional theory to model the complete chemical reaction mechanisms of several enzymes, e.g., for aromatic and aliphatic hydroxylation, chlorination, and oxidative ring-closure. Reactivity of the Fe(IV)=O species is discussed with focus on electronic and steric factors determining the preferred reaction path. Various spin states are compared, as well as the two reaction channels that stem from involvement of different frontier molecular orbitals of Fe(IV)=O. Further, the two distinctive species of Fe(IV)=O, revealed by Mossbauer spectroscopy, and possibly relevant for specificity of aliphatic chlorination, can be identified. The stability of the modeling results have been analyzed using a range of approaches, from active-site models to multi-scale models that include classical free-energy contributions. Large effects from an explicit treatment of the protein matrix (similar to 10 kcal/mol) can be observed for O-2 binding, electron-transfer and product release.
机译:单核非血红素铁酶可进行多种化学反应。仍然,催化机理通常是非常相似的,通过两个明确定义的步骤形成了一个关键的草酰氧(Fe(IV)= O)中间体。首先,发生双电子的双氧还原,形成过氧化物,然后发生O-O键断裂。即使过氧物质在各种酶家族中具有不同的化学特性,该组中不同酶之间的相似性也使其成为研究控制金属酶催化因素的极好基础。我们已经使用密度泛函理论来对几种酶的完整化学反应机理进行建模,例如,用于芳香族和脂肪族羟基化,氯化和氧化性闭环的酶。讨论了Fe(IV)= O物种的反应性,重点是确定优选反应路径的电子和空间因素。比较了各种自旋态,以及由于Fe(IV)= O的不同前沿分子轨道参与而产生的两个反应通道。此外,可以鉴定出由Mossbauer光谱法揭示的Fe(IV)= O的两个不同物种,并且可能与脂肪族氯化的特异性有关。建模结果的稳定性已使用多种方法进行了分析,从活动站点模型到包括经典自由能贡献的多尺度模型。可以观察到显式处理蛋白质基质(类似于10 kcal / mol)对O-2结合,电子转移和产物释放产生的巨大影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号